0040-4020(95)00752-0 # Stereoselective Synthesis of Perfluoroalkylated (E, E)-Dienes from Perfluoroalkylated Alkynes. The Synthesis of Fluorinated Analogs of Lepidoptera Pheromones # Zhong Wang and Xiyan Lu* Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China Abstract: Pd(dba)₂ -HOAc catalyzed the isomerization of 1-perfluoroalkyl-1-alkynes to give 1-perfluoroalkyl-(1E, 3E)-dienes in good yield and stereoselectivity; the fluorinated analogs of Lepidoptera species sex pheromone attractants were synthesized applying this method. # INTRODUCTION Conjugated dienes are important synthetic intermediates widely used in the construction of cyclic and multifunctionalized systems.¹ Accordingly, fluorine-containing 1, 3-dienes, such as 1-perfluoroalkyl-1, 3-dienes, not only may serve as biologically active compounds,^{2a} but also are valuable building blocks for the synthesis of selectively fluorinated compounds ^{2b} (Scheme 1). For example, Diels-Alder reaction leads to Bioactive compounds $$R_F$$ R_F # Scheme 1 carbocyclic compounds while metal catalyzed oxidation may give heterocyclic or polyfunctionalized structures with perfluoroalkyl substitution. However, the methods for preparing perfluoroalkylated 1, 3-dienes are up to now limited and suffer from lack of generality. Only perfluoroalkylated dienes with another electron-withdrawing group or with specific substitution pattern could be obtained.^{3,4} Concerning the potential changes in the metabolism, lipid solubility and volatibility of biologically active molecules through introduction of fluorine atoms,⁵ we are interested in the influence of fluorine atoms upon some bioactive dienic natural products. Herein, we report a convenient method to prepare 1-perfluoroalkyl-(1E, 3E)-dienes and the synthesis of fluorinated analogs of the sex pheromone attractants of Lepidoptera species. In the continuing study of the reactivity of electron-deficient alkynes, we have developed the transition metal-catalyzed alkyne-diene isomerization.⁶ Recently, we⁷ and Trost's group⁸ independently published the results on phosphine-catalyzed isomerization of electron-deficient acetylenic compounds to *E*, *E*-dienes. Considering the electron-withdrawing perfluoroalkyl group, a perfluoroalkyl-substituted alkyne is also an eletron-deficient alkyne, so we set out to explore the possibility of synthesizing perfluoroalkylated 1, 3-dienes by isomerization of perfluoroalkylated alkynes. # RESULTS AND DISCUSSION 1-Perfluoroalkyl-1-alkynes 3 are prepared easily from terminal alkynes by perfluoroalkyl iodide addition⁹ and subsequent HI elimination¹⁰ (**Table 1**). Unfortunately, our first trials on the isomerization of 3 using phosphine as the catalyst all failed. Thus, no reaction occurred when 3 was heated with triphenylphosphine in aromatic solvent, while more reactive tributylphosphine induced defluorination¹¹ of the starting material and resulted in unidentifiable tarry substances. 3 Table 1 Preparation of Perfluoroalkylated Alkynes 3. 1 | 3 | R_F | R | Yield (%) | |----|-----------------------------------|------------------------------------|-----------| | 3a | Cl(CF ₂) ₂ | n-C ₆ H ₁₃ | 47 | | 3b | $Cl(CF_2)_2$ | n-C ₈ H ₁₇ | 74 | | 3c | $Cl(CF_2)_2$ | (CH ₂) ₉ OH | 82 | | 3d | Cl(CF ₂) ₄ | $n-C_3H_7$ | 52 | | 3e | Cl(CF ₂) ₄ | $n-C_5H_{11}$ | 73 | | 3f | Cl(CF ₂) ₄ | (CH ₂) ₆ OH | 76 | | 3g | Cl(CF ₂) ₈ | $n-C_3H_7$ | 78 | | | | | | We then turned to investigate the reaction under transition metal-catalyzed conditions. In our previous work on transition metal-catalyzed isomerization of acetylenic compounds, two mechanisms were postulated: 1. through repeated metal hydride addition-elimination (using M-H complexes or zero valent palladium as the catalyst precursor). 2. through metal assisted phosphine catalysis(using high valent metal-phosphine complexes). Thus two types of catalytic systems were studied on substrate 3g and the results are listed in Table 2. As shown in the table, while Pd(dba)₂-PPh₃ and PdCl₂(PPh₃)₂ can not effect the isomerization, both Pd(dba)₂-HOAc-PPh₃ and Pd(OAc)₂-PPh₃ systems gave reasonable yields of diene product 4g. It occurred to us that the real catalyst is a Pd-H species generated from zero valent Pd and an active hydrogen source, ¹² although it is still unclear what is the H-source in the case of Pd(OAc)₂-PPh₃ catalytic system (entry 5, Table 2). The difference between Pd(OAc)₂ and PdCl₂ may be rationalized by the fact that Pd(OAc)₂ is easily reduced by Ph₃P to Pd(0)¹³ which in turn transforms to Pd-H species. This is supported by the formation of metallic Table 2. Isomerization reaction of 3g using different catalytic systems.^a | entry | catalyst | type ⁸ | additive | T(°C) | time | product | |-------|---------------------------|-------------------|----------|-------|------|-----------------------------| | | (mol%) | | (mol%) | | (h) | (%) ^c | | 1 | Pd(dba) ₂ (10) | A | none | 110 | 24 | No reaction | | | Ph ₃ P(40) | | | | | | | 2 | $Pd(dba)_2(5)$ | Α | HOAc | 80 | 48 | Partial | | | Ph ₃ P(20) | | (20) | | | conversion | | 3 | $Pd(dba)_2(5)$ | Α | HOAc | 110 | 12 | 4g (82) | | | Ph ₃ P(20) | | (20) | | | | | 4 | $PdCl_2(PPh_3)_2(5)$ | В | none | 110 | 48 | No reaction | | | PPh ₃ (10) | | | | | | | 5 | $Pd(OAc)_2(5)$ | В | none | 110 | 10 | 4g (63) ^e | | | Ph ₃ P(20) | | | | | | ^a Reaction conditions: A mixture of **3g**(0.5mmol), catalyst and additive in PhCH₃ (2mL) was stirred at specified temperature under Ar. The reaction was monitored by TLC and ¹⁹F NMR. palladium during the reaction. An analoguous reduction of PdCl₂, on the other hand, is much difficult, so PdCl₂(PPh₃)₂ failed to catalyze the isomerization. The ineffectiveness of PdCl₂-PPh₃ system also suggested that Pd(II) assisted nucleophilic catalysis of phosphine does not work here. ^b A: Pd(0) catalyst; B: Pd(II) catalyst. ^c Isolated yield by column chromatography. d The yield was not determined. ^{*} Pd metal precipitated out during the reaction. Using $Pd(dba)_2$ -HOAc catalytic system in PhCH₃ solvent, other substrates also isomerized smoothly to give perfluoroalkylated dienes in moderate to good yields. High E, E-stereoselectivity was obtained for all the isomerization products (**Table 3**). Table 3, Pd(dba)2-PPh3-HOAc Catalyzed Isomerization of 1-Perfluoroalkyl-1-Alkynes 3. | R _F ———————————————————————————————————— | Pd(dba) ₂ -PPh ₃ -HOAc | R _F | | |-----------------------------------------------------|----------------------------------------------|----------------|--| | rtorgongr | PhCH ₃ , reflux, Ar | ~ | | | 3 | | 4 | | | entry nu | | substrate | | | Yield | |----------------|--------|-----------------------------------|-------------------------------------|------|------------------| | | number | R _F | R' | | (%) ^a | | 1 | 3b | Cl(CF ₂) ₂ | n-C ₆ H ₁₃ | 4b | 80 | | 2^b | 3c | $Cl(CF_2)_2$ | $(CH_2)_7OH$ | 4c' | 88 | | 3 | 3e | Cl(CF ₂) ₄ | n-C ₃ H ₇ | 4e | 75 | | 4 | 3f' | Cl(CF ₂) ₄ | (CH ₂) ₄ OAc | 4f ' | 75 | | 5 ^b | 3f | Cl(CF ₂) ₄ | (CH ₂) ₄ OH | 4f ' | 76 | | 6 | 3g | $Cl(CF_2)_8$ | CH ₃ | 4g | 82 | | 7 ^b | 9 | CF ₃ | $(CH_2)_7OH$ | 5a | 85 | | 8^b | 10 | CF ₃ CF ₂ | (CH ₂) ₈ OH | 6a | 86 | a Isolated yield by column chromatography The double bond configuration of the diene products was established based on the H-H coupling constants in ^{1}H NMR spectra. Four vinylic protons were well resolved in 300 MHz ^{1}H NMR using $C_{6}D_{6}$ as the solvent. The coupling constant between H_{7} and H_{8} , 15.0Hz and the large J value for H_{β} (15.4Hz) indicated two trans double bonds (**Figure 1**). The E, E-configuration was also supported by the 990cm⁻¹ absorption peak in infrared spectra. 14 Figure 1 The high E, E-stereoselectivity might be account for by the relative thermodynamic stability between different diene isomers and the template effect of palladium, especially the latter ⁶. As shown in **Scheme 2**, the equilibriums favoring E, E-diene complex may result in the highly selective formation of E, E-dienes. b leq of Ac₂O was added besides Pd(dba)₂, PPh₃ and HOAc. The corresponding acetylated product was obtained. Scheme 2 A number of natural products have conjugated *E*, *E*-diene or polyene moiety. For example, 5 and 6 are the sex pheromone attractants of Lepidoptera species (Scheme 3). They were used to attract and capture male moths of *M. latiferranus*, a serious pest of filbernuts in some parts of America. In order to study the influence of fluorine atoms upon the biological properties of these molecules and to illustrate the utility of our isomerization method, we synthesized their partially fluorinated analogs 5a and 6a according to the route shown in Scheme 3. Trifluoromethyl alkynol 9 was prepared by a CF₃I addition-HI elimination sequence from 10-undecyn-1-ol 8. 9 was then isomerized and acetylated in one step to 5a, giving an overall yield of 31% starting from propargyl alcohol. 6a was similarly prepared, in an overall yield of 41%. $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{9}OH$$ $$(CH_{2})_{9}OH$$ $$(CH_{2})_{9}OH$$ $$(CH_{2})_{7}OAC$$ $$(CH_{2})_{8}OAC$$ $$(CH_{2})_{9}OH$$ $$($$ As described above, we have developed a new route to prepare perfluoroalkylated (1E, 3E)-dienes from readily available materials and successfully used this method to synthesize fluorinated insect pheromones. The generality and high stereoselectivity of this method are noteworthy. The reaction also reveals some insight of the isomerization mechanism of a different type of alkynes. Further applications of this novel synthesis, especially the elaboration of the perfluoroalkylated 1, 3-dienes to carbocyclic or heterocyclic compounds, are now under investigation. # **EXPERIMENTAL SECTION** General Methods. Melting points are uncorrected. IR spectra were run on a Shimadzu IR440 instrument. ¹H NMR were recorded with TMS as internal standard on a Varian EM390 or an Bruker XL300 spectrometer. ¹⁹F NMR spectra were recorded on an Varian EM356 spectrometer using CFCl₃ as external standard. MS data (EI) were obtained on a Finnigan 4201 spectrometer and HRMS data were obtained on an Finnigan MAT 8430 spectrometer. The analytical samples were purified by bulb-to-bulb distillation after column chromatography. General Procedure for Preparation of 1-Perfluoroalkyl-1-alkynes 3. To a stirred solution of perfluoroalkyl iodide 2 (10mmol) and 1-alkyne 1 (10mmol) in a mixed solvent of MeCN (15mL) and water (10mL), was added NaHCO₃ (1.00g, 12mmol) and Na₂S₂O₄ (2.08g, 12mmol). Stirring was continued at 10-15°C for 30min. The resulting mixture was diluted with water (20mL) and extracted with ethyl ether (30mL × 3). The combined organic layer was washed with brine (20mL × 2), dried (MgSO₄) and concentrated under reduced pressure to give the crude adduct. The adduct diluted in anhydrous ether (20mL) was added to a stirred suspension of BuOK (25mmol) in anhydrous ether (10mL) at -20°C. The mixture was stirred at -20°C for 1h and 0°C for another 2h. 3N HCl (10mL) was then added and the organic layer was separated, dried over anhydrous MgSO₄. After the solvent was removed by distillation, low boiling product was purified by fractional distillation and high boiling product by column chromatography on silica gel. Preparation of 9 and 10 was similar to the general procedure except that the gaseous CF₃I and C₂F₅I was bubbled into the mixture of NaHCO₃, Na₂S₂O₄, MeCN and water. 1-Chloro-1, 1, 2, 2-tetrafluoro-3-decyne (3a) bp 174-176°C. ¹H NMR(90MHz/CCl₄): 2.30(t, J=5.0Hz, 2H), 1.95-1.00(m, 8H), 0.85(t, J=6.0Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -71.0(m, 2F), -96.0(m, 2F) ppm; IR: 2950, 2850, 2250, 1470, 980 cm⁻¹; MS m/z: $247[M^{+}(^{37}Cl)+1](1.6)$, $245[M^{+}(^{35}Cl)+1](4.0)$, 232(6.8), 148(13.3), 129(14.1), 69(53.3), 55(81.6), 43(100); Anal. Calcd. for $C_{10}H_{13}ClF_4$: C, 49.09; H, 5.36. Found: C, 48.91; H, 4.97. 1-Chloro-1, 1, 2, 2-tetrafluoro-3-dodecyne (3b) bp $210-212^{\circ}\text{C}$. ¹H NMR(90MHz/CCl₄): 2.23(t, J=5.2Hz, 2H), 1.8-1.0(m, 12H), 0.80(t, J=6.0Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -70.7(m, 2F), -96.1(m, 2F) ppm; IR: 2930, 2870, 2260, 1280, 915 cm⁻¹; MS m/z: 274[M⁺(³⁷Cl)](0.3), 272[M⁺(³⁵Cl)](1.0), 253(4.6), 215(54.7), 97(25.9), 55(100), 43(74.9); Anal. Calcd. for: $C_{12}H_{17}\text{ClF}_4$, 82.85; H, 6.28. Found: C, 52.66; H, 6.50. 13-Chloro-12, 12, 13, 13-tetrafluorotridec-10-yn-1-ol (3c) bp 145-148°C/10mmHg. ¹H NMR(90MHz/CCl₄): 3.52(t, J=5.4Hz, 2H), 2.50-2.17(m, 2H), 1.80-1.10(m, 15H) ppm; ¹⁹F NMR(56MHz/CCl₄): -70.6(m, 2F), -96.2(m, 2F) ppm; IR: 3300, 2920, 2850, 2230, 1480, 1240, 1100, 840, 780 cm⁻¹; MS m/z: 304[M⁺(³⁷Cl)](3.7), 302[M⁺(³⁵Cl)](11.6), 285(5.0), 243(30.7), 229(51.6), 215(40.7), 95(39.5), 81(45.1), 69(79.0), 55(100), 43(34.8); HRMS Calcd. for C₁₃H₁₉ClF₄O: 302.1060; Found: 302.1014. 1-Chloro-1, 1, 2, 2, 3, 3, 4, 4-octafluoro-5-nonyne (3d) bp 155-157°C. ¹H NMR(90MHz/CCl₄): 2.15(t, J=6.0Hz, 2H), 1.80-1.25(m, 2H), 0.85(t, J=7.0Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -68.4(m, 2F), -97.0(m, 2F), -119.7(m, 2F), -122.2(m, 2F) ppm; IR: 2950, 2850, 2250, 1470, 1380, 1160, 850 cm⁻¹; MS m/z: 305[M*(³⁷Cl)+1](5.0), 303[M*(³⁵Cl)+1](5.4), 281(2.6), 257(1.7), 157(10.6), 107(21.4), 61(36.4), 55(9.6), 43(100); Anal. Calcd. for C₉H₇ClF₈: C, 35.72; H, 2.33. Found: C, 35.80; H, 2.38. 1-Chloro-1, 1, 2, 2, 3, 3, 4, 4-octafluoro-5-undecyne (3e) bp 190-192°C; ¹H NMR(90MHz/CCl₄): 2.25(t, J=5.5Hz, 2H), 1.80-1.10(m, 6H), 0.80(t, J=6.0Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -67.8(m, 2F), -95.6(m, 2F), -119.0(m, 2F), -121.4(m, 2F) ppm; IR: 2950, 2930, 2850, 2250, 1470, 1190, 700 cm⁻¹; MS m/z: 332[M⁺(³⁷Cl)](3.2), 331[M⁺(³⁵Cl)+1](10), 286(17.4), 268(15.8), 181(13.2), 149(17.6), 71(35.0), 57(36.6), 43(100); Anal. Calcd. for C₁₁H₁₁ClF₈: C, 39.96; H, 3.35. Found: C, 40.06; H, 3.20. 12-Chloro-9, 9, 10, 10, 11, 11, 12, 12-octafluorododec-7-yn-1-ol (3f) bp 88-90°C/8mmHg. ¹H NMR(90MHz/CCl₄): 3.60(t, J=6.0Hz, 2H), 2.25(t, J=6.4Hz, 2H), 2.60(br, 1H), 1.80-1.10(m, 8H) ppm; ¹⁹F NMR(56MHz/CCl₄): -67.8(m, 2F), -95.6(m, 2F), -119.0(m, 2F), -121.4(m, 2F) ppm; IR: 3350, 2950, 2870, 2250, 1190, 1135, 750 cm⁻¹; MS m/z: 362[M⁺(³⁷Cl)](0.5), 360[M⁺(³⁵Cl)](1.0), 346(2.7), 344(6.8), 301(18.9), 281(20.1), 85(10.5), 69(16.7), 61(29.6), 55(100); Anal. Calcd. for C₁₂H₁₃ClF₈O: C, 39.96, H, 3.63. Found: C, 39.57; H, 3.38. 1-Chloro-1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8-hexadecafluoro-9-tridecyne (3g) bp 75-76°C/10mmHg. ¹H NMR(90MHz/CCl₄): 2.10(t, J=6.0Hz, 2H), 1.90-1.20(m, 2H), 0.82(t, J=7.0Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -69.4(m, 2F), -97.8(m, 2F), -119.0~ -125.4(m, 12F) ppm; IR: 2930, 2250, 1470, 1190, 980, 700 cm⁻¹, MS m/z: 485[M⁺(³⁷Cl)-F](0.5), 483[M⁺(³⁵Cl)-F](1.8), 457(1.9), 291(6.1), 157(47.1), 117(100), 97(26.2), 69(23.2), 42(18.5). Anal. Calcd. for C₁₃H₇ClF₁₆: C, 31.06; H, 1.40. Found: C, 30.72; H, 1.16. 12, 12, 12-Trifluorododec-10-yn-1-ol (9) bp 132-134°C/10mmHg. ¹H NMR(90MHz/CCl₄): 3.44(t, J=6.0Hz, 2H), 2.96(brs, 1H), 2.46-1.96(m, 2H), 1.80-1.10(m, 14H) ppm; ¹⁹F NMR(56MHz/CCl₄): -48.8(s, 3F) ppm; IR: 3350, 2950, 2850, 2250, 1460, 1280, 1130, 785 cm⁻¹; MS m/z: 236(M⁺)(2.1), 219(2.2), 177(16.4), 175(13.2), 163(27.2), 149(31.9), 69(66.4), 55(100), 43(40.1). HRMS: Calcd. for C₁₂H₁₇F₃: 218.1282; Found: 218.1258. 13, 13, 14, 14, 14-Pentafluorotetradec-11-yn-1-ol (10) bp 78-80°C/1mmHg. ¹H NMR(90MHz/CCl₄): 3.53(t, J=5.5Hz, 2H), 2.60-2.15(2H), 1.90-1.10(m, 17H) ppm; ¹⁹F NMR(56MHz/CCl₄): -85.1(m, 3F), -100.2(m, 2F) ppm; IR: 3350, 2950, 2870, 2250, 1465, 1370, 1220, 1120, 1080 cm⁻¹; MS m/z: 300(M⁺)(1.5), 282(4.5), 263(11.7), 213(30.1), 133(52.8), 55(100), 43(46.2); HRMS Calcd. for C₁₄H₁₉F₅: 282.1407; Found: C, 282.1399. 12-Acetoxy-1-Chloro-1, 1, 2, 2, 3, 3, 4, 4-octafluoro-5-dodecyne (3f') was prepared by acetylation of 3f. bp 85-87°C/ 10mmHg. 1 H NMR(90MHz/CCl₄): 4.05(t, J=5.5Hz, 2H), 2.42(t, J=6.0Hz, 2H), 1.98(s, 3H), 1.80-1.10(m, 8H) ppm; 19 F NMR(56MHz/CCl₄): -67.8(m, 2F), -95.6(m, 2F), -119.0(m, 2F), -121.4(m, 2F) ppm; IR: 2950, 2870, 2250, 1740, 1465, 1370, 1220, 1120, 780 cm⁻¹; MS m/z: 405[M⁺(37 Cl)+1](0.7), 403[M⁺(35 Cl)+1](1.7), 383(3.2), 343(18.3), 323(18.3), 85(9.2), 69(16.6), 61(29.6), 43(100); Anal. Calcd. for $C_{14}H_{15}$ ClF₈O₂: C, 41.75; H, 3.75. Found: C, 41.52; H, 3.70. Typical Procedure for the Isomerization of 1-Perfluoroalkyl-1-alkyne. A solution of 3b (1.0mmol), Pd(dba)₂ (0.10mmol), PPh₃ (0.20mmol), HOAc (1.0mmol) in 2mL PhCH₃ was degassed and protected under argon. The mixture was then stirred at 110°C and monitored by ¹⁹F NMR. The reaction was completed in 24h. The solvent was evacuated and flash chromatography on silica gel (eluent: petroleum ether) gave 4b. 1-Chloro-1, 1, 2, 2-tetrafluorododeca-3E, 5E-diene (4b) bp $70-72^{\circ}\text{C}/\text{4mmHg}$. ¹H NMR(300MHz/C₆D₆): 7.20-7.00(m, 1H), 6.60(ddt, J=15.4, 10.4, 2.1Hz,1H), 5.68(dd, J=15.0, 10.4Hz, 1H), 5.42(dt, J=15.0, 6.7Hz, 1H), 2.20(t, J=6.5Hz, 2H), 1.60-1.20(m, 8H), 0.85(t, J=6.4Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -71.0(m, 2F), -107.3(m, 2F) ppm; IR: 2950, 2850, 1660, 1360, 1200, 990, 750 cm⁻¹; MS m/z: 272[M⁺(³⁷Cl)-2](0.6), 270[M⁺(³⁵Cl)-2](6.8), 239(10.8), 200(5.8), 167(9.3), 149(100), 105(36.3), 69(53.1), 57(62.1), 43(51.3); Anal. Calcd. for C₁₂H₁₇ClF₄: C, 52.85; H, 6.28; H, 52.90; H, 6.20. 13-Acetoxy-1-chloro-1, 1, 2, 2-tetrafluorotrideca-3E, 5E-diene (4c') bp 150-152°C/15mmHg. ¹H NMR(300MHz/CDCl₃): 7.20-7.05(m, 1H), 6.75(ddt, J=15.4, 9.8, 2.0Hz, 1H), 6.08(dd, J=15.0, 9.8Hz, 1H), 5.62(dt, J=15.0, 6.5Hz, 1H), 4.05(t, J=6.8Hz, 2H), 2.25-2.05(m, 2H), 2.05(s, 3H), 1.70-1.50(m, 2H), 1.50-1.20(m, 8H) ppm; ¹⁹F NMR(56MHz/CCl₄): -71.0(m, 2F), -96.2(m, 2F) ppm; IR: 2920, 2850, 1740, 1660, 1365, 1150, 1090, 990, 780 cm⁻¹; MS m/z: 346[M⁺(³⁷Cl)](1.8), 344[M⁺(³⁵Cl)](4.8), 308(23.9), 295(6.9), 282(22.6), 143(27.2), 129(44.6), 93(63.8), 55(41.7), 43(100); Anal. Calcd. for C₁₅H₂₁ClF₄O₂: C, 52.26; H, 6.14. Found: C, 52.52; H, 6.17. 1-Chloro-1, 1, 2, 2, 3, 3, 4, 4-octafluoroundeca-5*E*, 7*E*-diene (4e) bp 48-50°C/10mmHg. ¹H NMR(300MHz/CDCl₃): 7.20-7.00(m, 1H), 6.70(ddt, J=15.4, 10.6, 2.0Hz, 1H), 6.04(dd, J=15.0, 10.6Hz, 1H), 5.62(dt, J=15.0, 6.5Hz, 1H), 2.20(q, J=6.5Hz, 2H), 1.60-1.20(m, 2H), 0.85(t, J=6.7Hz, 3H) ppm; ¹⁹F NMR(56MHz/CCl₄): -67.2(m, 2F), -110.5(m, 2F), -119.5(m, 2F), -122.0(m, 2F) ppm; IR: 2950, 2850, 1660, 1240, 1200, 990, 830 cm⁻¹; MS m/z: 334[M⁺(³⁷Cl)+2](1.0), 332[M⁺(³⁵Cl)+2](3.2), 286(18.5), 268(11.2), 149(19.7), 71(35.0), 57(56.1), 43(100); Anal. Calcd. for C₁₁H₁₁CIF₈: C, 39.96; H, 3.35. Found: C, 39.56; H, 3.51. 12-Acetoxy-1-Chloro-1, 1, 2, 2, 3, 3, 4, 4-octafluorododeca-5E, 7E-diene (4F) bp 136-138°C/15mmHg. 1 H NMR(300MHz/C₆D₆): 7.20-7.00(m, 1H), 6.61(ddt, J=15.4, 10.6, 2.1Hz, 1H), 5.64(dd, J=15.0, 10.6Hz, 1H), 5.42(dt, J=15.0, 7.0Hz, 1H), 3.92(t, J=6.5Hz, 2H), 1.75(s, 3H), 1.80-1.60(m, 2H), 1.40-0.95(m, 4H) ppm; 19 F NMR(56MHz/CCl₄): -67.2(m, 2F), -110.5(m, 2F), -119.2(m, 2F), -122.0(m, 2F) ppm; IR: 2920, 2850, 1740, 1660, 1360, 1240, 1200, 990, 750 cm⁻¹; MS m/z: 404[M⁺(37 Cl)](0.5), 402[M⁺(35 Cl)](1.0), 366(3.3), 236(16.3), 205(9.2), 177(9.2), 131(70.8), 91(40.0), 55(13.3), 43(100); Anal. Calcd. for C₁₄H₁₅ClF₈O₂: C, 41.75; H, 3.75. Found: C, 41.45; H, 3.72. 1-Chloro-1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8-hexadecafluoroundeca-9E, 11E-diene (4g) bp 75-77°C/10mmHg. 1 H NMR(300MHz/C₆D₆): 7.30-7.00(m, 1H), 6.60(ddt, J=15.5, 10.5, 2.0Hz, 1H), 5.96(dd, J=16.0, 10.5Hz, 1H), 5.42(dq, J=16.0, 6.6Hz, 1H), 1.45(d, J=6.6Hz, 3H) ppm; 19 F NMR(56MHz/CCl₄): -68.4(m, 2F), -111.5(m, 2F), -120.9(m, 2F), -121.5~ -123.0(m, 8F), -123.8(m, 2F) ppm; IR: 3010, 2920, 1660, 1360, 1240, 990, 700 cm⁻¹; MS m/z: 485[M⁺(37 Cl)-F](0.5), 483[M⁺(35 Cl)-F](1.6), 291(15.9), 242(15.3), 157(100), 117(92.6), 97(26.4), 69(27.2), 42(18.5); Anal. Calcd. for C_{13} H₇ClF₁₆: C, 31.06; H, 1.40; Found: C, 31.30; H, 1.11. 12-Acetoxy-1, 1, 1-trifluorododeca-2*E*, 4*E*-diene (5a) oil. 1 H NMR(300MHz/CDCl₃): 7.20-7.00(m, 1H), 6.70(ddq, J=15.5, 9.6, 2.0Hz, 1H), 6.00(dd, J=15.5, 9.6Hz, 1H), 5.58(dt, J=15.5, 6.5Hz, 1H), 4.05(t, J=6.7Hz, 2H), 2.15(q, J=6.5Hz, 2H), 2.06(s, 3H), 1.70-1.55(m, 2H), 1.50-1.20(m, 8H) ppm; 19 F NMR(56MHz/CCl₄): -62.6(m, 3F) ppm; IR: 2920, 2820, 1740, 1660, 1240, 1110, 990 cm⁻¹; MS m/z: 279(M⁺+1)(0.4), 258(48.5), 219(22.2), 148(48.4), 116(43.4), 79(82.0), 67(40.8), 43(100); HRMS: Calcd. for $C_{14}H_{21}F_{2}O_{2}$: 258.1431; Found: 258.1476. 14-Acetoxy-1, 1, 1, 2, 2-pentafluorotetradeca-3*E*, 5*E*-diene (6a) oil. 1 H NMR(300MHz/CDCl₃): 7.20-7.05(m, 1H), 6.75(ddt, J=15.4, 9.8, 2.0Hz, 1H), 6.08(dd, J=15.0, 9.8Hz, 1H), 5.62(dt, J=15.0, 6.5Hz, 1H), 4.05(t, J=6.8Hz, 2H), 2.25-2.05(m, 2H), 2.05(s, 3H), 1.70-1.50(m, 2H), 1.50-1.20(m, 10H) ppm; 19 F NMR(56MHz/CCl₄): -69.3(m, 3F), -108.5(m, 2F) ppm; IR: 2920, 2850, 1740, 1660, 1150, 1090, 990, 780 cm⁻¹; MS m/z: 342(M⁺)(5.0), 306(25.0), 293(7.1), 280(21.5), 141(29.1), 127(44.6), 91(64.5), 57(42.1), 43(100). Anal. Calcd. for C₁₆H₂₃F₅O₂: C, 56.13; H, 6.77. Found: C, 55.97; H, 6.88. Acknowledgement. We thank the Chinese Academy of Sciences and the National Natural Science Fundation of China for financial support. # REFERENCES AND NOTES - Stewart, J. D.; Benkovic, S. J. Chemtracts: Org. Chem. 1993, 6, 31; Wen, H.; Han, G. Zhongguo Yaowu Huaxue Zazhi 1993, 3, 142; Chem. Abstr. 1994, 120, 53895. Andersson, P. G.; Nilsson, Y. I. M.; Bäckvall, J. -E. Tetrahedron 1994, 50, 559. - (2) (a) Tellier, F.; Sauvtre, R.; Normant, J. F. J. Organomet. Chem. 1989, 364, 17 and references cited therein. (b) Schlosser, M.; Spahic, B.; Tarchini, C. Helv. Chim. Acta. 1980, 63, 1223. - (3) Huang, W. J. Fluorine Chem. 1992, 58, 1. - (4) Shen, Y.; Qiu, W. Tetrahedron Lett. 1987, 28, 4283. - (5) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine Chemistry, Kodansha: Tokyo, 1982; Welch, J. T. Tetrahedron 1987, 43, 3123. - (6) Ma, D.; Yu, Y.; Lu, X. J. Org. Chem. 1989, 54, 1105. - (7) Guo, C.; Lu, X. J. Chem. Soc., Perkin Trans. 1, 1993, 1921. - (8) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114, 7933. - (9) Huang, W., Lu, L., Zhang, Y. Chin. J. Chem. 1990, 348, Chem. Abstr. 1991, 114, 142603. - (10) Baum, K.; Bedford, C. D.; Hunadi, R. J. J. Org. Chem. 1982, 47, 2251. - (11) The ¹⁹F NMR spectra of the reaction mixture showed a doublet at -44ppm (δ^{CFCl₃}, J_{P-F}=588Hz) corresponding to the ¹⁹F NMR signal of Bu₃PF₂. See Emsley, J. W.; Feeney, J.; Sutcliffe, L. H. *Progress in Nuclear Magnetic Resonance Spectroscopy*, Pergamon: Oxford, 1971, vol 7. - (12) Trost, B. M.; Rise, F. J. Am. Chem. Soc. 1987, 109, 3161. Trost, B. M.; Schmidt, T. J. Am. Chem. Soc. 1988, 110, 2301. - (13) Amatore, C.; Jutand, A.; M'Barki, M. A. Organometallics 1992, 11, 3009. Amatore, C.; Carre, E.; Jutand, A.; M'Barki, M. A. Organometallics 1995, 14, 1818. - (14) Kluge, A. F.; Lillya, C. P. J. Org. Chem. 1971, 31, 1977. - (15) Thaller, V. in Aliphatic and Related Natural Product Chemistry, Burlinton: London, 1979, vol 1, p1. Miyakado, M.; Nakayama, I.; Ohno, N. in Insecticides of Plant Origin, Arnason, T.; Philogene, B. J. R.; Morand, P.(eds), ACS: Washington, DC. 1989, p173. - (16) Descoins, C.; Gallois, M. Ann. Zool. -Ecol. Anim. 1979, 11, 521; Davies, H. G.; McDonough, L. M. Environ. Entomol. 1981, 10, 390. (Received in China 13 July 1995; accepted 1 September 1995)